When:
August 24, 2022 @ 14:00 – 15:00 Europe/Copenhagen Timezone
2022-08-24T14:00:00+02:00
2022-08-24T15:00:00+02:00

 

Adele: Probing CDM interactions in high-z galaxy clustering with the BUFFALO HST survey

Analyzing the clustering behavior of galaxies across a wide redshift range allows us to model the gravitational assembly of such structures over cosmic time. We achieve this by measuring the 2-point correlation of galaxies at 0.01 < z < 8.5, gravitationally lensed by the foreground cluster Abell370 in BUFFALO. With this understanding, we can probe our current model of Cold Dark Matter (CDM), specifically the assumption that it interacts solely through gravitation. More importantly, studying galaxies at high redshift gives us a more complete picture of clustering at various snapshots in time. In this talk, I will summarize how the correlation function informs us about galaxy clustering behavior, my results from running correlation functions in both the COSMOS 2020 and BUFFALO surveys, and share how predictive clustering calculations at different redshift and mass bins compare to measured correlations.


Riely: Evidence for Inside-Out Growth in Galaxy Simulations

Recent observations have found a correlation for galaxies between their gas temperatures in star-forming clouds and specific Star Formation Rate (sSFR). The resulting model has led to several new predictions, such as inside out galaxy growth, compact galaxies at high redshifts and distinct morphological phases of galactic evolution. We employ GIDGET, a one-dimensional semi-analytical radius dependent galaxy evolution model, to explore these observational results. We find broadly similar behaviour of inside out galaxy growth and changing morphology. Additionally, we present new predictions for the nature of galaxy evolution with implications for their behaviour right after formation and for the extrapolation of the star-forming main sequence to lower masses.