If the next month doesn't display, please refresh the page.

Jun
24
Thu
Cake Talk: Thomas Greve and Seiji Fujimoto @ Zoom
Jun 24 @ 16:00 – 17:00
When: This Thursday @ 1600 CET
Duration: 1 hour (2 x 20 minute talks + questions)

Thomas Greve:

Galaxy Clusters – Emergence and Prominence
 
Galaxy clusters are the most massive gravitationally-bound objects in the Universe. Their alluring beauty so prominently on display in the present-day Universe, mega-parsec-sized structures containing up to thousands of galaxies residing in massive dark matter halos, belies what is likely a complex and prolonged formation history. In this caketalk I will discuss what we know and don’t know about how galaxy overdensities associated with protoclusters formed and evolved with cosmic time.  I will also discuss what role accreting supermassive black holes, so-called active galactic nuclei (AGN), might have had in the buildup of protoclusters.  I will present result from the RAGERS, SPT, and COSMOS2020 surveys – surveys that we are either leading or are deeply involved in at DAWN.
Seiji Fujimoto: 
 

ALMA Lensing Cluster Survey: A Sub-kpc View of [CII] emission from a Sub-L* Galaxy in the epoch of reionization

I present bright [CII] 158 μm line detections from a strongly magnified and multiply-imaged (μ20160) sub-L (MUV = 19.75) Lyman-break galaxy (LBG) at z=6.0719 +/- 0.0004 from the ALMA Lensing Cluster Survey (ALCS). Owing to the uniquely deep and wide survey volume being explored by ALCS, we successfully detect emission lines at 268.7 GHz at ≥ 8σ exactly at positions of two multiple images of the LBG behind a massive galaxy cluster. Our lens models, updated with the latest spectroscopy from VLT/MUSE, indicate that a sub region of the LBG crosses the caustic and is lensed into a long (6) arc with a local magnification of μ160, for which the [CII] line is also significantly detected. The source-plane reconstruction resolves the interstellar medium (ISM) structure, showing that the [CII] line is co-spatial with the rest-frame UV continuum at the scale of 300 pc. The [CII] line properties suggest that the LBG is a rotation-dominated system whose velocity gradient explains a slight difference of redshifts between the whole LBG and its sub region. The star formation rate (SFR)-L[CII] relations from the sub to the whole regions of the LBG are consistent with those of local galaxies. We evaluate the lower limit of the faint-end of the [CII] luminosity function at z=6, and find that it is consistent with predictions from semi-analytical models and from a SFR function at z=6 converted with the local SFR-L[CII] relation. These results imply that the local SFR-L[CII] relation is universal for a wide range of scales including the spatially resolved ISM, the whole region of the galaxy, and the cosmic scale, even in the epoch of reionization. I will also present JWST observations for this unique lensed system, which has been approved in cycle 1. I will also introduce our DAWN-IRES summer project working with Hollis at the end of the talk.
Aug
16
Tue
DAWN-IRES presentations @ Room 01.2.I.158
Aug 16 @ 14:00 – 15:15
PROGRAM:
  • 2:00-2:15: Lauren
    • [CII] as a Tracer of HI Gas in High-z Galaxies
  • 2:15-2:30: Eric
    • [CII] as a tracer of molecular and atomic gas
  • 2:30-2:45: Allan
    • Analyzing ALESS73.1 in CO and [CI]
  • 2:45-3:00: Rebeca
    • Star Formation Efficiency with FLARES
  • 3:00-3:15: Hanga
    • Searching through MOSFIRE Archival Data
Aug
18
Thu
Cake talk: Christian Kragh Jespersen
Aug 18 @ 14:00 – 15:00

Learning Galaxy Properties from Merger Trees with Mangrove

Efficiently mapping between baryonic properties and dark matter is a major challenge in astrophysics.
Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, both still require significant computation times, and are hard to succinctly analyze, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this cake talk I will introduce a new, graph-based emulator framework, Mangrove, and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass with scatters two times lower than other methods across a simulation box of side length 75 Mpc/h in 40 seconds, 4 orders of magnitude faster than a SAM and 9 orders of magnitude faster than a hydro simulation. I’ll also show how Mangrove allows for quantification of the dependence of galaxy properties on merger history, making it possible to learn about the simulations on a new level. I will also compare Mangrove results to the current state of the art in emulating the dark matter – galaxy connection and show significant improvements for all target properties.

Mangrove is publicly available at https://github.com/astrockragh/Mangrove.